Co	rso c	di La	aure	ea in	ı In	itorr	mat	ica			Ar	ialis	i M	ate	mat	tica				dice		23			

(Nome)

(Numero di matricola)

1	a
2	С
3	С
$\boxed{4}$	a
5	a
6	d
7	d
8	d
9	b
10	b
11	С
12	a

1. La funzione
$$f:[0,+\infty)\longrightarrow [0,+\infty)$$
 definita da $f(x)=(x+1)\cos\left(\frac{1}{x+1}\right)$

▶ (a) è iniettiva ma non surgettiva

(Cognome)

(b) è surgettiva ma non iniettiva

(c) è bigettiva

(d) non è né iniettiva né surgettiva

$$f(x) = (x+1) \cos \left(\frac{1}{x+1}\right) \qquad f: [0,+\infty) \rightarrow [0,+\infty)$$

$$f \in \text{derivabile e}$$

$$f'(x) = \cos\left(\frac{1}{x+1}\right) + (x+1) \left(-\sin\left(\frac{1}{x+1}\right)\right) \left(-\frac{1}{(x+1)^2}\right) = os\left(\frac{1}{x+1}\right) + \frac{1}{x+1} \sin\left(\frac{1}{x+1}\right)$$
ostervious oca che $x \ge 0$ qualidi $o < \frac{1}{x+1} \le 1$ albera
$$\cos\left(\frac{1}{x+1}\right) > 0, \quad \sin\left(\frac{1}{x+1}\right) > 0, \quad \text{quildi } f'(x) > 0 \quad \forall \ \forall \in [0,+\infty).$$
La funcione $f \in \text{quindi strettamente crescente}, \text{ per tau to}$

$$\bar{e} \quad \text{in ethiva}.$$

Dalla menotonia di fotteniono anche de

min [f]= f(0)= cos 1 >0 quindi f vou è surgettira per hi il vode univio di f è [0,+0).

2.
$$\lim_{x \to 0^{+}} (x - \sin x)^{\frac{1}{\log x}} =$$
(a) $\sqrt[6]{e}$ (b) $+\infty$ \blacktriangleright (c) e^{3} (d) 1

Solutione:

$$(X-\sin x)^{\frac{1}{\log x}} = e^{\frac{1}{\log x} \log (X-\sin x)}$$

Osserviance de, per x-> st,

lag
$$(x-\sin x) = \log (x-(x-\frac{x^3}{6}+o(x^n))) = \log (\frac{x^3}{6}+o(x^n)) =$$

$$= \log \left(x^{3} \left(\frac{1}{6} + o(x) \right) = \log (x^{3}) + \log \left(\frac{1}{6} + o(x) \right) = 3 \log x + \log \left(\frac{1}{6} + o(x) \right)$$

$$\Rightarrow \lim_{x\to 0^+} \frac{1}{\log x} \log (x - \sin x) = \lim_{x\to 0^+} \frac{3 \log x + \log \left(\frac{1}{6} + o(x)\right)}{\log x} =$$

$$= 3 + \frac{696}{-8} = 3 + 6 = 3$$

$$\Rightarrow \lim_{x\to 0^+} (x-\sin x) = e$$

3. $\lim_{x\to +\infty} \int_x^{x+\frac{1}{\log x}} \log t \, dt =$ (a) e (b) $+\infty$ \blacktriangleright (c) 1 (d) 0

Soluzione:

Poidré x-3+20 possieure vousiderere x>1 quindi logx>0 $e \times + \frac{1}{\log_X} > X$. Dal teorema della media integrale (l'integranda è continua) esiste $\geq \in (x, x + \frac{1}{\log x})$ t.c. $\int \log t \, dt = \log 2 \cdot \left(x + \frac{1}{\log x} - x \right) = \frac{\log 2}{\log x}$ $\frac{\log x}{\log x} < \frac{\log x}{\log x} < \frac{\log (x + \frac{\log x}{\log x})}{\log (x + \frac{\log x}{\log x})}$ Avremo quindi $\lim_{x \to +\infty} \frac{\log \left(x + \frac{1}{\log x}\right)}{\log x} = \lim_{x \to +\infty} \frac{\log x + \log \left(1 + \frac{1}{x \log x}\right)}{\log x} = 1$

e ovviamente him logx =1. Dol teorema dei

corabinieri otterious quindi de X+ cgx hu $\frac{\log 2}{\log x} = 1$ vio \tilde{e} him $\log t dt = 1$.

In alternativa si potera calcolore explicitaemente l'intégrale et exejuire il limite:

$$\int_{x}^{x+} \log x dt = \left[t \log t - t \right]_{x}^{x+} = \dots$$

4. La funzione $F(x) = \int_{x^2}^{3} \log(1+t^2) dt$

 \blacktriangleright (a) è concava in tutto \mathbb{R}

(c) ha esattamente due punti di flesso

(b) è convessa in tutto \mathbb{R}

(d) ha un solo punto di flesso

Solutione:

$$F(x) = \int_{x^{2}}^{3} \log(1+t^{2}) dt$$

$$F'(x) = -2x \log(1+(x^{2})^{2}) = -2x \log(1+x^{4})$$

$$F''(x) = -2 \left(\log(1+x^{4}) + x \cdot \frac{1}{1+x^{4}} \cdot 4x^{2}\right) = -2 \left(\log(1+x^{4}) + \frac{4x^{4}}{1+x^{4}}\right)$$
Dato the $\log(1+x^{4}) \ge 0 + x \in \mathbb{R}$ otherisans the $F''(x) \le 0 + x \in \mathbb{R}$, quindi F è concava in tutto \mathbb{R} .

$$5. \int_{-\sqrt{g}}^{+\infty} \frac{(\sin x)^6}{x(\log x)^2} dx$$

▶ (a) converge a un valore minore o uguale a 2

(c) non esiste

(b) diverge positivamente

(d) converge a un valore maggiore o uguale a e

Pouremo $f(x) = \frac{(\sin x)^6}{x(\log x)^2}$ e osserviamo de $f(x) \ge 0$ in the l'intervalle di integrazione, quindi l'integrale converge o diverge positivamente.

Dato de $0 \le f(x) \le \frac{1}{x(\log x)^2}$, velutions l'integrale $\int \frac{1}{x(\log x)^2} dx$. Calcians una primitiva con la

Te

Sostitutione $\log x = t$, $\frac{dt}{dx} = \frac{1}{x}$, $\frac{dx}{x} = dt$

 $\int \frac{dx}{x(\log x)^2} = \int \frac{dt}{t^2} = -\frac{1}{t} + c = -\frac{1}{\log x} + c \quad \text{, quindi}$ $\int \frac{dx}{x(\log x)^2} = \left[-\frac{1}{\log x} \right]^{M} = -\frac{1}{\log M} + \frac{1}{\log M} = -\frac{1}{\log M} + 2$ $\int \frac{dx}{x(\log x)^2} = \left[-\frac{1}{\log x} \right]^{M} = -\frac{1}{\log M} + \frac{1}{\log M} = -\frac{1}{\log M} + 2$

Allow $\int \frac{dx}{x(\log x)^2} = \lim_{M \to +\infty} -\frac{1}{\log M} + 2 = 2.$

No signe the llintegrale converge e $\int \frac{(\sin x)^6}{x((bgx)^2} dx \le \int \frac{dx}{x((bg^1x))} = 2.$

6. L'integrale
$$\int_{0}^{1} \frac{\sin(x^2 - x)}{x \log(1 + x)} dx$$

(a) non esiste

(b) converge

(c) diverge positivament (d) diverge negativamente

$$\int_{0}^{1} \frac{\sin(x^{2}-x)}{x \log(1+x)} dx$$

Sin
$$f(x) = \frac{\sin(x^2 - x)}{x \log(1+x)}$$
.

La funzione f neu é définita per x=0 ed é outina in (0,1], basterà quindi vedere l'audamento di f per x-sot:

$$f(x) = \frac{x^{2}-x+o((x^{2}-x)^{2})}{x^{2}-x+o((x^{2}-x)^{2})} = \frac{x-1+o(x)}{x-1+o(x)} = \frac{x(1+o(x))}{x} = \frac{x}{x}$$

$$= \frac{x-1+o(x)}{x} \frac{1}{1+o(1)} = \left(1-\frac{1}{x}+o(1)\right) \frac{1}{1+o(1)}$$

Da questa oualisi segue de f(x) <0 in un intour destro di 0 e de ha un oudo mento asintotios a $-\frac{1}{x}$. Scegliano quindi $g(x)=-\frac{1}{x}$

e offendous che

$$\lim_{x\to o^{\dagger}} \frac{f(x)}{g(x)} = \lim_{x\to o^{\dagger}} \left(1 - \frac{1}{x} + o(1)\right) \frac{-x}{1 + o(1)} = 1.$$

Dato de (g(x)dx = -00, del criterio del oufranto

asintotics abbiens de l'f(x) dx diverge negativamente.

7.
$$\lim_{n \to +\infty} \frac{1}{\sin\left(\frac{1}{\log n}\right)} - \log n =$$

 $(a) +\infty$

(b)
$$-\infty$$

Ricordando da Sint=t+o(t1) per t->> ed eseguendo la sostitucione $t=\frac{1}{\log n}$ per $n->+\infty$, otheriamo sin $\left(\frac{1}{\log n}\right)=\frac{1}{\log n}+o\left(\frac{1}{\log^2 n}\right)$. Ne segue due $\frac{1}{\sin\left(\frac{1}{\log n}\right)}-\log n=\frac{1}{\log n}+o\left(\frac{1}{\log^2 n}\right)$ $=\frac{\log n}{1+o\left(\frac{1}{\log n}\right)}-\log n=\frac{\log n-\left(1+o\left(\frac{1}{\log n}\right)\right)\log n}{1+o\left(\frac{1}{\log n}\right)}=\frac{\log n-\left(1+o\left(\frac{1}{\log n}\right)\right)\log n}{1+o\left(\frac{1}{\log n}\right)}=\frac{\log n-\left(\frac{1}{\log n}\right)}{1+o\left(\frac{1}{\log n}\right)}=0$

8. La successione
$$a_n = \left(5n - \frac{1}{n^2}\right)\log\left(1 - \frac{4}{n}\right)$$
 con $n \ge 5$

(a) non ha segno costante

(b) è infinitesima

(c) diverge a $-\infty$

▶ (d) è limitata inferiormente

Soluzione:

$$\alpha_{n} = \left(5n - \frac{1}{h^2}\right) \log\left(1 - \frac{4}{n}\right) \qquad n \ge 5$$

per n= +00 $a_n = n \left(5 - \frac{1}{N^3}\right) \left(-\frac{4}{N} + o\left(\frac{1}{N}\right)\right) = 5n \left(1 + o\left(\frac{1}{N}\right) \left(-\frac{4}{N}\right) \left(1 + o\left(\frac{1}{N}\right)\right) =$ $= -20 \left(1 + o\left(\frac{1}{N}\right)\right)$ $= -20 \left(1 + o\left(\frac{1}{N}\right)\right)$

9. La serie
$$\sum_{n\geq 1} \left(\frac{1+(-1)^n}{n} + \frac{(-1)^n-1}{n^2} \right)$$

(a) converge assolutamente

(c) converge ma non converge assolutamente

(b) diverge positivamente

(d) diverge negativamente

Solutione:

Osserviann de

$$\frac{4+\left(-1\right)^{N}}{N}+\frac{\left(-1\right)^{N}-1}{N^{2}}=\frac{4}{N}-\frac{1}{N^{2}}+\left(-1\right)^{N}\left(\frac{1}{N}+\frac{1}{N^{2}}\right).$$

Cousideriaus separature te i tre addendi.

∑ 1 diverge positivamente

5 in onverge.

Z (-1) (\frac{1}{n} + \frac{1}{n^2}) converge per il criterio di Leibnit infatti $\frac{1}{n} + \frac{1}{n^2} \rightarrow 0$ ed \hat{e} decre sente.

Quindi la somma delle tre serve à divergente positivamente.

10. La serie
$$\sum_{n} \frac{(-1)^n}{2n^2 + 3n(-1)^n}$$

(a) converge semplicemente ma non assolutamente
(b) converge assolutamente

(c) è indeterminata

(d) diverge positivamente

$$\frac{(-1)^n}{2n^2+3n(-1)^n} = \frac{1}{|2n^2+3n(-1)^n|}$$

$$|\frac{(-1)^n}{2n^2+3n(-1)^n}| = \frac{1}{|2n^2+3n(-1)^n|}$$
Prendiano $b_n = \frac{1}{n^2}$ $c_n = \frac{1}{|2n^2+3n(-1)^n|}$

Risulta line $\frac{a_n}{b_n} = \frac{1}{2}$. Dato de $\sum_n b_n$ onverge, per il criterio del confronto, $\sum_n \frac{1}{|2n^2+3n(-1)^n|}$ onverge, quindi $\sum_n \frac{(-1)^n}{2n^2+3n(-1)^n}$ onverge assolutamente.

11. La funzione
$$f(x,y) = \begin{cases} \frac{\sqrt{1-\cos y} \sin x}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0), \end{cases}$$
 nel punto $(0,0)$

- (a) ha entrambe le derivate parziali ed è continua
- (b) è continua ma non ha nessuna delle derivate parziali
- lackbox (c) ha entrambe le derivate parziali ma non è continua (d) ha una sola derivata parziale

$$f(x,y) = \begin{cases} \sqrt{1 - \cos y} & \sin x \\ \sqrt{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \end{cases}$$

$$cong = \begin{cases} \sqrt{x^2 + y^2} & \text{se } (x,y) = (0,0) \end{cases}$$

Consideriamo la derivata partiale rispetto a x in (0,0):

$$\frac{f(0+h,0)-f(0,0)}{h}=\frac{\sqrt{1-\cos 0}\,\sin h}{h(h^2+0)}=0 \longrightarrow 0 \longrightarrow \frac{2f}{2x}(0,0)=0.$$

Per la derivata rispetto a y avveno:

$$\frac{f(0,0+h)-f(0,0)}{h}=\frac{\sqrt{1-\cosh'\sin\theta}}{h\left(0+h^2\right)}=0 \longrightarrow 0 \longrightarrow \frac{2f}{2y}(0,0)=0.$$

I ha quindi entrembe le dérivate partieli in (0,0).

Vedieurs la continuità.

Se vousiderieurs le curva pt+)=(t,0) (assex) avreurs:

$$\lim_{t\to 0} f(r(t)) = \lim_{t\to 0} \frac{\sqrt{1-\omega_20} \sin t}{t^2+0} = 0$$

Se inveu ou si deriamo dt)= (t,t), t>0, otheriamo

$$=\lim_{t\to 0^+} \frac{1-(1-\frac{t^2}{2}+o(t^2))}{2t} \cdot 1 = \lim_{t\to 0^+} \frac{t^2(\frac{1}{2}+o(t))}{2t} =$$

$$=\lim_{t\to 0^+} \frac{t\sqrt{\frac{1}{2}+o(t)}}{2t} = \frac{1}{2\sqrt{2}} \neq 0$$

quindi f non è outinna in (0,0).

12. Sia $f(x,y) = \log(9y - 3x - 3)$. Per quale delle seguenti direzioni v risulta $\frac{\partial f}{\partial v}(1,1) = 0$?

• (a)
$$v = (3,1)$$

(b)
$$v = (1,1)$$

(c)
$$v = (3,0)$$

(d)
$$v = (1, -3)$$

$$f(x,y) = \log(9y-3x-3)$$

$$f_{x} = \frac{-3}{9y-3x-3}, \quad f_{y} = \frac{9}{9y-3x-3}$$

$$f_{x}(1,1) = \frac{-3}{9-3-3} = \frac{-3}{3} = -1, \quad f_{y}(1,1) = \frac{9}{9-3-3} = \frac{9}{3} = 3$$

$$\nabla f(1,1) = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

Te immediate verificare the
$$\binom{-1}{3}$$
. $\binom{3}{1} = -3+3=0$, quindi
Se $V = \binom{3}{1} = \frac{5f}{5V}(1,1) = \nabla f(1,1) \cdot V = 0$.

Co	rso d	li L	aure	ea ii	n lı	nfor	mat	tica			Aı	nalis	i M	late	ma	tica	l				odice 4 dice		23			

(Nome)

(Numero di matricola)

1	С
2	С
3	С
4	b
5	d
6	С
7	a
8	a
9	d
10	d
11	С
12	b

1. La funzione
$$f:[0,+\infty)\longrightarrow [0,+\infty)$$
 definita da $f(x)=(x+1)\cos\left(\frac{1}{x+1}\right)$

(a) è surgettiva ma non iniettiva

(Cognome)

(b) non è né iniettiva né surgettiva

▶ (c) è iniettiva ma non surgettiva

(d) è bigettiva

$$f(x) = (x+1) \cos \left(\frac{1}{x+1}\right) \qquad f: [0,+\infty) \rightarrow [0,+\infty)$$

$$f \in derivabile \quad e$$

$$f'(x) = \cos \left(\frac{1}{x+1}\right) + (x+1) \left(-\sin \left(\frac{1}{x+1}\right)\right) \left(-\frac{1}{(x+1)^2}\right) = os \left(\frac{1}{x+1}\right) + \frac{1}{x+1} \sin \left(\frac{1}{x+1}\right)$$
ostervious ora che $x \ge 0$ qualidi $oc \frac{1}{x+1} \le 1$ allora
$$\cos \left(\frac{1}{x+1}\right) > 0, \quad \sin \left(\frac{1}{x+1}\right) > 0, \quad qualidi \quad f'(x) > 0 \quad \forall x \in [0,+\infty).$$
La funcione $f \in qualidist$ ettamente crescente, per tou to \bar{e} inettiva.

Dalla menetonia di f ottenione anche che
$$\min \{f\} = f(o) = \cos 1 > 0 \quad qualif \quad van \bar{e} \quad \text{surgettiva}$$
per che il vode univio di $f \in [0,+\infty)$.

2. La funzione
$$f:(0,+\infty)\longrightarrow \mathbb{R}$$
 definita da $f(x)=\frac{\log(x^2+1)}{x}-\arctan x$

- (a) è inferiormente limitata ma non è superiormente limitata
- (b) ha minimo
- ▶ (c) è inferiormente limitata ma non ha minimo
 - (d) non è limitata né superiormente né inferiormente

$$f(x) = \frac{\log(x^2+1)}{x} - \operatorname{arcty} x , \quad f:(0,+\infty) \to \mathbb{R}$$
So $x \to 0^+$
$$f(x) = \frac{x^2 + o(x^2)}{x} - \operatorname{arcty} x = x + o(x) - \operatorname{arty} x \to 0$$

lim
$$\log(x^2+1) - \operatorname{arcty} x = 0 - \frac{\pi}{2} = -\frac{\pi}{2} \quad (\text{per gerarchia di } \infty)$$

$$x \to +\infty \quad x \quad x \quad - \operatorname{arcty} x = 0 - \frac{\pi}{2} = -\frac{\pi}{2} \quad (\text{per gerarchia di } \infty)$$
Per il teoreura di Weierstrass generalizzato f \bar{e} limitata, in particolore \bar{e} in ferior mente limitata.

Dato due
$$\log(x^2+1) > 0 \quad \forall x > 0 \quad \text{otherisms} \quad \text{the}$$

$$f(x) > -\operatorname{arcty} x > -\frac{\pi}{2} \quad \text{Poidue lim} \quad f(x) = -\frac{\pi}{2}$$

$$risulta \quad \text{due inf}(f) = -\frac{\pi}{2} \quad \text{Dato due } f(x) + -\frac{\pi}{2} \quad \forall x > 0,$$

$$f \quad \text{non ha uniquim } 0.$$

3.
$$\lim_{x \to +\infty} \int_{x}^{x + \frac{1}{\log x}} \log t \, dt =$$
(a) $+\infty$ (b) e \blacktriangleright (c) 1 (d) 0

Poidré x-5+20 possieuro considerare X>1 quindi logx20 $e \times + \frac{1}{\log_X} > X$. Dal teorema della media integrale (l'integranda è voutinua) esiste $\geq \in (x, x + \frac{1}{\log x})$ t.c. $\int \log t \, dt = \log 2 \cdot \left(x + \frac{1}{\log x} - x \right) = \frac{\log 2}{\log x}$ Avremo quindi $\frac{\log x}{\log x} < \frac{\log 2}{\log x} < \frac{\log (x + \frac{1}{\log x})}{\log x}$ $\lim_{x \to +\infty} \frac{\log \left(x + \frac{1}{\log x}\right)}{\log x} = \lim_{x \to +\infty} \frac{\log x + \log \left(1 + \frac{1}{x \log x}\right)}{\log x} = 1$ e ovviamente him log x =1. Dol teorema dei corabinieri otterious quindi che X+ cgx $\lim_{x\to\infty} \frac{\log^2 z}{\log x} = 1 \quad \text{cio} \, \bar{\epsilon} \quad \lim_{x\to+\infty} \int \log^2 t \, dt = 1.$ In alternativa si potera calabare explinitamente l'intégrale et exeguire il limite: $x + \int_{-\infty}^{\infty} \log t \, dt = \left[\int_{-\infty}^{\infty} \log t - t \right] = \cdots$

4. Sia $F: \mathbb{R} \longrightarrow \mathbb{R}$ definita da $F(x) = \int_{3}^{x^2} e^{t^2} + 1 dt$. Risulta che

(a)
$$\min(F) > 0$$

(b) $\min(F) < 0$

(c) F è inferiormente limitata ma non ha minimo

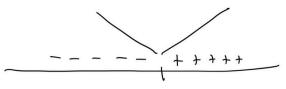
(d) $\inf(F) = -\infty$

Solutione:

$$F: \mathbb{R} \rightarrow \mathbb{R}$$
 $F(x) = \int_{0}^{x^{2}} e^{t^{2}} + 1 dt$

$$F'(x) = (e^{(x^2)^2} + 1)2x$$

 $F'(x) \ge 0$ $(x^2)^2 + 1 \ge 0$



quindi
$$x=0$$
 à purto di unimino assoluto per F .

 $uin(F)=F(0)=\int_{0}^{\infty}e^{t^{2}}+1 dt=-\int_{0}^{\infty}e^{t^{2}}+1 dt<0$

poidie $e^{t^{2}}>0$ $\forall t\in[0,3]$.

$$5. \int_{\sqrt{e}}^{+\infty} \frac{(\sin x)^6}{x(\log x)^2} dx$$

(a) diverge positivamente

- (b) non esiste
- (c) converge a un valore maggiore o uguale a e
- (d) converge a un valore minore o uguale a 2

Poureuro $f(x) = \frac{(\sin x)^6}{x(\log x)^2}$ e osserviamo de $f(x) \ge 0$ in to the l'intervalle di integrazione, quindi l'integrale converge o diverge positivemente.

Dato de $0 \le f(x) \le \frac{1}{x(\log x)^2}$, velutions l'integrale $\int \frac{1}{x(\log x)^2} dx . \quad \text{Calchians una primitiva con la}$ Te $\int \frac{1}{x(\log x)^2} dx . \quad \int \frac{1}{x(\log x)^2} dx . \quad \int \frac{1}{x(\log x)^2} dx .$ Sostiturione $\log x = t$, $\frac{1}{dx} = \frac{1}{x}$, $\frac{dx}{x} = dt$

 $\int \frac{dx}{x(\log x)^2} = \int \frac{dt}{t^2} = -\frac{1}{t} + c = -\frac{1}{\log x} + c, \text{ quindi}$ $\int \frac{dx}{x(\log x)^2} = \left[-\frac{1}{\log x} \right]^M = -\frac{1}{\log M} + \frac{1}{\log Ne} = -\frac{1}{\log M} + 2$

Allow $\int \frac{dx}{x(\log x)^2} = \lim_{N \to +\infty} -\frac{1}{\log N} + 2 = 2.$

No signe de l'integrale converge e $\int \frac{(\sin x)^6}{x(6g^x)^2} dx \le \int \frac{dx}{x(6g^1x)} = 2.$

6.
$$\lim_{x \to +\infty} \frac{1}{x\sqrt{x}} \int_{2}^{x^{3}} \frac{dt}{\sqrt{t} + \sin t} =$$
(a) 0 (b) $+\infty$

Poulous
$$F(x) = \int_{1}^{x^{3}} \frac{dt}{tE + sint}$$
. Risulto du

lim $F(x) = \int_{2}^{t} \frac{dt}{tE + sint} = +\infty$. In fath,

lim $\frac{1}{tE + sint} = 1$, quindi possiones oppliare

il critico del confronto osinto di contrado conto che

$$\int_{1}^{\infty} \frac{dt}{tE} = +\infty$$
Povince ora $g(x) = x \cdot x = x^{3/2}$. Dato de lim $g(x) = +\infty$

abbitano che lim $\frac{F(x)}{g(x)} = \frac{1}{t^{2}}$. Proviones ad

appliare il teorema di de l'Hôpital.

$$F'(x) = 3x^{2} \frac{1}{x^{3} + sin(x^{3})} = \frac{3x^{2}}{x^{3/2} + sin(x^{3})}$$

$$g'(x) = \frac{3}{2} x^{1/2}$$

$$\lim_{x \to +\infty} \frac{F(x)}{g'(x)} = \lim_{x \to +\infty} \frac{3x^{2}}{x^{3/2} + sin(x^{3})} = \lim_{x \to +\infty} \frac{2x^{2}}{x^{3/2} + sin(x^{3})}$$
Quindi lim $\frac{F(x)}{g(x)} = 2$.

7. $\lim_{n \to +\infty} \frac{1}{\sin\left(\frac{1}{\log n}\right)} - \log n =$

Solutione:

Ricordando da Sint=t+o(t¹) per t→0 ed eseguendo

la sostitutione $t = \frac{1}{\log n}$ per $n \to rab$, otheriamo

Sin $\left(\frac{1}{\log n}\right) = \frac{1}{\log n} + o\left(\frac{1}{\log^2 n}\right)$. Ne segue due $\frac{1}{\sin\left(\frac{1}{\log n}\right)} - \log n = \frac{1}{\log n} + o\left(\frac{1}{\log^2 n}\right)$ $= \frac{\log n}{1 + o\left(\frac{1}{\log n}\right)} - \log n = \frac{\log n - \left(1 + o\left(\frac{1}{\log n}\right)\right)\log n}{1 + o\left(\frac{1}{\log n}\right)} = \frac{\log n - \left(1 + o\left(\frac{1}{\log n}\right)\right)\log n}{1 + o\left(\frac{1}{\log n}\right)} = \frac{\log n - \log n + o(1)}{1 + o\left(\frac{1}{\log n}\right)} = 0$

- **8.** Data la successione $a_n = \frac{1}{\log(n^3)\sin(-\frac{1}{n})}$ definita per n > 1, risulta che
- \blacktriangleright (a) esiste il massimo di (a_n)

(b) esiste il minimo di (a_n)

(c) (a_n) è limitata inferiormente

(d) non esiste il limite di (a_n)

$$a_{n} = \frac{1}{\log(n^{3})} \sin(-\frac{1}{n}) = \frac{1}{3\log n} \left(-\frac{1}{n} + s\left(\frac{1}{n^{2}}\right)\right)$$

$$= \frac{1}{3\log n} \left(-1 + o\left(\frac{1}{n}\right)\right) = \frac{n}{3\log n} \frac{1}{\left(-1 + s\left(\frac{1}{n}\right)\right)} \longrightarrow (+\infty) \frac{1}{-1 + o} = -\infty$$

$$= \frac{3\log n}{n} \left(-1 + o\left(\frac{1}{n}\right)\right)$$

$$= \frac{1}{3\log n} \left(-1 + o\left(\frac{1}{n}\right)\right)$$

9. La serie
$$\sum_{n\geq 1} \left(\frac{1+(-1)^n}{n} + \frac{(-1)^n-1}{n^2} \right)$$

(a) converge ma non converge assolutamente

(b) diverge negativamente

(c) converge assolutamente

(d) diverge positivamente

Solutione:

Osserviann de

$$\frac{1+\left(-1\right)^{n}}{N} + \frac{\left(-1\right)^{n}-1}{N^{2}} = \frac{1}{N} - \frac{1}{N^{2}} + \left(-1\right)^{n} \left(\frac{1}{N} + \frac{1}{N^{2}}\right).$$

Cousideraus separature te i tre addendi.

∑ 1 diverge positivamente

 $\sum \frac{1}{N^2}$ unverge.

 $\sum_{n=1}^{\infty} (\frac{1}{n} + \frac{1}{n^2})$ onverge per il criterio di Leibnit infatti $\frac{1}{n} + \frac{1}{n^2} \rightarrow 0$ ed è decre sente.

Quindi la somma deble tre serve à divergente positivamente.

10. La serie $\sum_{n} \frac{4^{3n}}{2n^27^n}$

(a) converge semplicemente ma non assolutamente

(b) è indeterminata

(c) converge assolutamente

 \blacktriangleright (d) diverge a $+\infty$

Solutione:

an = $\frac{4^{3n}}{2n^27^n}$. Osserviamo de an≥o e applichiamo: l criterio della radice.

$$\sqrt[n]{a_n} = \sqrt[n]{\frac{4^2n}{2n^2}} = \frac{4^3}{7} \sqrt[n]{2n^2} = \frac{64}{7} \cdot \sqrt[n]{2n^2} \Rightarrow \frac{64}{7} \cdot \frac{1}{1} = \frac{64}{7} > 1$$
quindi $\sum_{n} a_n$ diverge positivamente.

11. La funzione
$$f(x,y) = \begin{cases} \frac{\sqrt{1-\cos y} \sin x}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0), \end{cases}$$
 nel punto $(0,0)$

(a) ha entrambe le derivate parziali ed è continua

(b) è continua ma non ha nessuna delle derivate parziali

(c) ha entrambe le derivate parziali ma non è continua (d) ha una sola derivata parziale

$$f(x,y) = \begin{cases} \sqrt{1 - \cos y} & \sin x \\ \sqrt{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \end{cases}$$

$$\int \frac{x^2 + y^2}{x^2 + y^2} = (x,y) = (0,0)$$

Consideriamo la derivata partiale rispetto a x in (0,0):

$$\frac{f(0+h,0)-f(0,0)}{h}=\frac{\sqrt{1-\omega_00}\sin h}{h(h^2+0)}=0 \longrightarrow 0 \longrightarrow \frac{2f}{2x}(0,0)=0.$$

Per la derivata rispetto a y avveno:

$$\frac{f(0,0+h)-f(0,0)}{h}=\frac{\sqrt{1-\cosh^2\sin\theta}}{h\left(0+h^2\right)}=0 \longrightarrow 0 \longrightarrow \frac{2f}{2y}\left(0,0\right)=0.$$

I ha quindi entrembe le dérivate partieli in (0,0).

Vedieurs la continuità.

Se ouridrians le curva pt/= (t,0) (astex) avreurs:

Se invere our iderians a(t) = (t,t), t > 0, offenious line $f(a(t)) = \lim_{t \to 0^+} \frac{\sqrt{1-\omega_s t} \cdot \sin t}{2t} = \lim_{t \to 0^+} \frac{\sqrt{1-\omega_s t} \cdot \sin t}{2t}$

$$=\lim_{t\to 0^+} \frac{t\to 0^+}{2t} \cdot 1 = \lim_{t\to 0^+} \frac{t^2(\frac{1}{2}+0(t))}{2t} =$$

$$= \lim_{t \to 0^+} \frac{t \sqrt{\frac{1}{2} + o(t)}}{2t} = \frac{1}{2\sqrt{2}} + 0$$

quindi f non è outinna in (0,0).

12. I punti stazionari della funzione $f(x,y) = x^3 + 2xy - 2y^2$ sono

 $f(x,y) = x^3 + 2xy - 2y^2$ $f_x = 3x^2 + 2y$ $f_y = 2x - hy$ Of = 0 (=) $\begin{cases} 3x^2 + 2y = 0 \\ 2x - hy = 0 \end{cases}$ (=) $\begin{cases} 3x^2 + 2y = 0 \\ x = 2y \end{cases}$ $\begin{cases} x - 2y = 0 \end{cases}$ (=) $\begin{cases} x - 2y$

Cors	so di	Laur	ea	in li	ntorn	nati	ca		'	Ana	ilisi	Ma	ten	natio	ca				- 1	codice 14 dic		3			
											1					1									

(Nome)

(Numero di matricola)

1	a
2	a
3	С
4	С
5	d
6	d
7	С
8	b
9	a
10	С
11	a
12	d

1. La funzione
$$f:[0,+\infty)\longrightarrow [0,+\infty)$$
 definita da $f(x)=(x+1)\cos\left(\frac{1}{x+1}\right)$

▶ (a) è iniettiva ma non surgettiva

(b) è surgettiva ma non iniettiva

(c) non è né iniettiva né surgettiva

(Cognome)

(d) è bigettiva

$$f(x) = (x+1) \cos\left(\frac{1}{x+1}\right) \qquad f: [0,+\infty) \rightarrow [0,+\infty)$$

$$f \in derivabile e$$

$$f'(x) = \cos\left(\frac{1}{x+1}\right) + (x+1) \left(-\sin\left(\frac{1}{x+1}\right)\right) \left(-\frac{1}{(x+1)^2}\right) = os\left(\frac{1}{x+1}\right) + \frac{1}{x+1} \sin\left(\frac{1}{x+1}\right)$$
ostervious ora de $x \ge 0$ quihdi $o < \frac{1}{x+1} \le 1$ allors
$$\cos\left(\frac{1}{x+1}\right) > 0, \quad \sin\left(\frac{1}{x+1}\right) > 0 \quad , \quad \text{quihdi} \quad f'(x) > 0 \quad \forall x \in [0,+\infty).$$
La funcione $f \in \text{quindi} \text{ strettamente crescente }, \text{ per tau to}$

$$\bar{e} \quad \text{inethiva}.$$
Dalla menetonia di f ottenione on de de
$$\min\left\{f\right\} = f(o) = \cos 1 > 0 \quad \text{quindi} \quad f \text{ vou } \bar{e} \text{ surgettiva}$$

$$\text{per dui il vodo univio di } f \in [0,+\infty).$$

- **2.** La funzione $f: \mathbb{R} \longrightarrow \mathbb{R}$ definita da $f(x) = e^{\frac{x^5 + \sin x}{x^4 + (\cos x)^2}}$
- ▶ (a) è limitata inferiormente ma non ha minimo
 - (c) ha minimo ma non ha massimo

- (b) ha sia massimo che minimo
- (d) è limitata superiormente ma non inferiormente

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $f(x) = e^{\frac{x^5 + \sin x}{x^4 + (\cos x)^2}}$

Disserviamo du

$$\lim_{x\to\infty} \frac{x^{5} + \sin x}{x^{4} + (63^{2}4)} = \lim_{x\to\infty} \frac{x^{8} \left(1 + \frac{\sin x}{x^{5}}\right)}{x^{4} \left(1 + \frac{63^{2}x}{x^{6}}\right)} = \frac{\infty \cdot (1+0)}{(1+0)} = +\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty = -\infty \cdot (1+0) = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty = -\infty \cdot (1+0) = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty = -\infty \cdot (1+0) = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty = -\infty \cdot (1+0) = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty = -\infty \cdot (1+0) = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty = -\infty \cdot (1+0) = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty = -\infty \cdot (1+0) = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty = -\infty \cdot (1+0) = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty = -\infty \cdot (1+0) = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{4} + 63^{2}x} = -\infty$$

$$\lim_{x\to-\infty} \frac{x^{5} + \sin x}{x^{5} + 63^{2}x} = -\infty$$

Per il teoreme di Weierstrass generalitzato f à limidata inferiormente. Surpre per la stesso teorema d'ha minimo (=) d' x t.c. $f(x) \le 0$, cioè $\frac{x^5 + \sin x}{x^4 + \sin^2 x} \le 0$ die non ha soluzione ferdie $t \ge 0$ $t \in \mathbb{R}$. Quindi f non ha minimo.

3.
$$\lim_{x \to +\infty} \int_{x}^{x+\frac{1}{\log x}} \log t \, dt =$$
 (a) $+\infty$ (b) e \blacktriangleright (c) 1 (d) 0

Poidré x-3+20 possieure vousiderere x>1 quindi logx>0 $e \times + \frac{1}{\log_X} > X$. Dal teorema della media integrale (l'integranda è continua) esiste $\geq \in (x, x + \frac{1}{\log x})$ t.c. $\int \log t \, dt = \log 2 \cdot \left(x + \frac{1}{\log x} - x \right) = \frac{\log 2}{\log x}$ $\frac{\log x}{\log x} < \frac{\log x}{\log x} < \frac{\log (x + \frac{\log x}{\log x})}{\log (x + \frac{\log x}{\log x})}$ Avremo quindi $\lim_{x \to +\infty} \frac{\log \left(x + \frac{1}{\log x}\right)}{\log x} = \lim_{x \to +\infty} \frac{\log x + \log \left(1 + \frac{1}{x \log x}\right)}{\log x} = 1$

e ovviamente him logx =1. Dol teorema dei

corabinieri otterious quindi de X+ cgx hu $\frac{\log 2}{\log x} = 1$ vio \tilde{e} him $\log t dt = 1$.

In alternativa si potera calcolore explicitaemente l'intégrale et exejuire il limite:

$$\int_{x}^{x+} \log x dt = \left[t \log t - t \right]_{x}^{x+} = \dots$$

4. La funzione
$$F: \mathbb{R} \longrightarrow \mathbb{R}$$
 definita da $F(x) = \int\limits_0^x t(1-t^2)e^{\cos(t^2)}\,dt$

- (a) ha un solo punto di minimo locale e un solo punto di massimo locale
- (b) non ha né massimi né minimi locali
- ▶ (c) ha due punti di massimo locale e uno di minimo locale
 - (d) ha un solo punto di massimo locale e nessun minimo locale

Solutione:

$$F(x) = \int_{0}^{x} t(1-t^{2}) e^{\cos(t^{2})} dt$$

$$F'(x) = \int_{0}^{x} t(1-x^{2}) e^{\cos(x^{2})} dt$$

$$T(x) = \int_{0}^{x} t(1-x^{2}) e^{\cos(x^{2})} dt$$

$$\int_{0}^{x} t(x-x^{2}) e^{\cos(x^{2})}$$

$$5. \int_{\sqrt{e}}^{+\infty} \frac{(\sin x)^6}{x(\log x)^2} dx$$

(a) non esiste

- (b) diverge positivamente
- (c) converge a un valore maggiore o uguale a e
- ▶ (d) converge a un valore minore o uguale a 2

Pourano $f(x) = \frac{(\sin x)^6}{x(\log x)^2}$ e osserviamo da $f(x) \ge 0$ in to the l'intervalle di integrazione, quindi l'integrale converge o diverge positivamente.

Dato de $0 \le f(x) \le \frac{1}{x(\log x)^2}$, velutions l'integrale J x(logx)? dx. Calabiano una primitiva con la sostituriene logx=t, dt = 1 , dx = dt $\int \frac{dx}{x(\log x)^2} = \int \frac{dt}{t^2} = -\frac{1}{t} + c = -\frac{1}{\log x} + c , quindi$ $\int \frac{dx}{x(\log x)^2} = \left[-\frac{1}{\log x} \right]^{M} = -\frac{1}{\log M} + \frac{1}{\log Ne} = -\frac{1}{\log M} + 2$ Allow $\int \frac{dx}{x(\log x)^2} = \lim_{M \to +\infty} -\frac{1}{\log M} + 2 = 2.$ No signe de l'integrale converge e $\int \frac{(\sin x)^6}{x(\log x)^2} dx \le \int \frac{dx}{x(\log^2 x)} = 2.$

6.
$$\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{x} - x^2}{(\sin x)^2} \, dx$$

(a) diverge negativamente (b) non esiste

(c) converge

(d) diverge positivamente

$$f(x) = \frac{\sqrt{x - x^2}}{(\sin x)^2}$$

La functione à valinne in (0, I). Esaminiano il comportamento

$$f(x) = \frac{x^{1/2} (1 - x^{3/2})}{(x + o(x^2))^2} = \frac{x^{1/2} (1 - x^{3/2})}{x^2 (1 + o(x))^2} = \frac{1 - x^{3/2}}{x^{3/2} (1 + o(x))^2}$$

Sceglieur $g(x) = \frac{1}{x^{3/2}}$ e osseriour de

$$\lim_{x\to 0^+} \frac{f(x)}{g(x)} = \lim_{x\to 0^+} \frac{1-x^{3/2}}{x^{3/2}} \cdot \frac{x^{3/2}}{(1+o(x))^2} \cdot \frac{1-0}{(1+o(x))^2} = 1$$

Dato he g(x)>0 t x>0 e lim f(x)=1 segue de f(x)>0 in un intorno destro di O. Possiano quindi explicare il critero del confronto asintotico conclududo che T/2 f(x)dx divera positivamente dato de J g(x)dx = + 20.

7.
$$\lim_{n \to +\infty} \frac{1}{\sin\left(\frac{1}{\log n}\right)} - \log n =$$
(a) $+\infty$ (b) 1 \blacktriangleright (c) 0 (d) $-\infty$

Ricordando du Sint=t+o(t²) per t→0 ed eseguenda

la sostitutione $t = \frac{1}{\log n}$ per $n \to rao$, otheriamo

Sin $\left(\frac{1}{\log n}\right) = \frac{1}{\log n} + o\left(\frac{1}{\log^2 n}\right)$. Ne segue due $\frac{1}{\sin\left(\frac{1}{\log n}\right)} - \log n = \frac{1}{\frac{1}{\log n} + o\left(\frac{1}{\log^2 n}\right)} - \log n = \frac{\log n - \left(1 + o\left(\frac{1}{\log n}\right)\right) \log n}{1 + o\left(\frac{1}{\log n}\right)} = \frac{\log n - \left(1 + o\left(\frac{1}{\log n}\right)\right) \log n}{1 + o\left(\frac{1}{\log n}\right)} = \frac{\log n - \log n + o(1)}{1 + o\left(\frac{1}{\log n}\right)} = 0$

 $\lim_{n\to\infty} a_n = \frac{0}{1} = 0 .$

Soluzione:

$$a_{N} = \frac{3^{n}}{n! \, n^{1/n}}$$

Privordiano de lim $N'' = \lim_{N \to \infty} |\nabla n| = 1$. Pouiano $b_{n} = \frac{3^{n}}{n!}$

Utilizzando il criterio del rapporto per b_{n} otteniano

 $\frac{b_{n+1}}{b_{n}} = \frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^{n}} = \frac{3}{n+1} \rightarrow 0$, quie di lim $b_{n} = 0$ e, di en reguenta

9. La serie
$$\sum_{n\geq 1}\left(\frac{1+(-1)^n}{n}+\frac{(-1)^n-1}{n^2}\right)$$

► (a) diverge positivamente

- (b) diverge negativamente
- (c) converge ma non converge assolutamente
- (d) converge assolutamente

Soluzione

Osserviann de

$$\frac{4+\left(-1\right)^{N}}{N} + \frac{\left(-1\right)^{N}-1}{N^{2}} = \frac{4}{N} - \frac{1}{N^{2}} + \left(-1\right)^{N} \left(\frac{1}{N} + \frac{1}{N^{2}}\right).$$

Cousidoriamo separature te i tre addendi.

≥ 1 diverge positivamente

 $\sum \frac{1}{N^2}$ onverge.

 $\sum_{n=1}^{\infty} (\frac{1}{n} + \frac{1}{n^2})$ onverge per il criterio di Leibnit infatti $\frac{1}{n} + \frac{1}{n^2} \rightarrow 0$ ed è decre sente.

Quindi la somma delle tre serve à divergente positivamente.

10. La serie
$$\sum_{n} \frac{4^{(4n)}}{3\sqrt{n}+1}$$

(a) diverge negativamente

(b) converge assolutamente

• (c) diverge positivamente

(d) converge ma non converge assolutamente

Solutione:

Osserviamo de

quirdi la strie non converge

Dats che la serie è a ternimi positivi etteriamo che diverge positivamente.

11. La funzione
$$f(x,y) = \begin{cases} \frac{\sqrt{1-\cos y} \sin x}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0), \end{cases}$$
 nel punto $(0,0)$

- (a) ha entrambe le derivate parziali ma non è continua (b) ha una sola derivata parziale
 - (c) ha entrambe le derivate parziali ed è continua (d) è continua ma non ha nessuna delle derivate parziali Soluzione:

$$f(x,y) = \begin{cases} \sqrt{1 - \cos y} & \sin x \\ \sqrt{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \end{cases}$$

$$\int \frac{x^2 + y^2}{x^2 + y^2} = (x,y) = (0,0)$$

Consideriamo la derivata partiale rispetto a x in (0,0):

$$\frac{f(0+h,0)-f(0,0)}{h}=\frac{\sqrt{1-\omega_00}\sin h}{h(h^2+0)}=0 \longrightarrow \frac{2f(0,0)=0}{2x}(0,0)=0.$$

Per la derivata rispetto a y avveno:

$$\frac{f(0,0+h)-f(0,0)}{h}=\frac{\sqrt{1-\cosh^2\sin\theta}}{h\left(0+h^2\right)}=0 \implies \frac{2f}{2y}(0,0)=0.$$

I ha quindi entrembe le dérivate partieli in (0,0).

Vedieurs la continuità.

Se ouridrians le curva pt+)=(t,0) (astex) avreus:

Se inveu ou si deriamo dt)= (t,t), t>0, offeniamo

$$=\lim_{t\to 0^+} \frac{1-(1-\frac{t^2}{2}+o(t^2))}{2t} \cdot 1 = \lim_{t\to 0^+} \frac{t^2(\frac{1}{2}+o(t))}{2t} =$$

$$=\lim_{t\to 0^+} \frac{t\sqrt{\frac{1}{2}+o(t)}}{2t} = \frac{1}{2\sqrt{2}} \neq 0$$

quindi f non è continua in (0,0).

12. L'insieme
$$E = \{(x,y,z) \in \mathbb{R}^3 : x = y = 0, -1 < z < 1\}$$

(a) è chiuso

(c) non ha punti di accumulazione

(b) è aperto

▶ (d) non è né aperto né chiuso

Solutione:

X=0, y=0 descrive l'asse à in R³, quindi l'insience E è un segnente di retta (la parte dell'asse à compress tra le quote -1 e 1, estreuni esclusi).

E nou à aperto perdie tuti i suci punh nou sous infermi (ne basterebbe audie uno solo). Ad exumpio (0,0,0) EE una, per ogni r>o Br(0) & E E nou à diviso perdie nou continue tuti i suci printi di frontiera. Ad esempio (0,=1) EDE una (0,0,1) & E.